728x90
반응형
최단 경로 알고리즘
- 가장 짧은 경로를 찾는 알고리즘
- 다양한 문제 상황
- 한 지점에서 다른 한 지점까지의 최단 경로
- 한 지점에서 다른 모든 지점까지의 최단 경로
- 모든 지점에서 다른 모든 지점까지의 최단 경로
- 각 지점 -> 그래프에서 노드로 표현
- 지점 간 연결된 도로 -> 그래프에서 간선으로 표현
다익스트라 최단 경로 알고리즘
- 특정한 노드에서 출발하여 다른 모든 노드로 가는 최단 경로를 계산
- 음의 간선이 없을 때 정상적으로 동작
- 현실 세계의 도로(간선) -> 음의 간선으로 표현 X
- 그리디 알고리즘으로 분류
- 매 상황에서 가장 비용이 적은 노드를 선택해 임의의 과정 반복
동작 과정
- 출발 노드 설정
- 최단 거리 테이블 초기화
- 방문 X 노드 중에서 최단 거리가 가장 짧은 노드 선택
- 해당 노드를 거쳐 다른 노드로 가는 비용을 계산 -> 최단 거리 테이블 갱신
- 3번과 4번 반복ㅅ음
- 알고리즘 동작 과정에서 최단 거리 테이블 -> 각 노드에 대한 현재까지의 최단 거리 정보 가지고 있음
- 처리 과정에서 더 짧은 경로 찾으면 갱신
특징
- 그리디 알고리즘: 매 상황에서 방문 X 가장 비용이 적은 노드를 선택해 임의의 과정 반복
- 단계 거치며 한 번 처리된 노드의 최단 거리는 고정 -> 더 이상 바뀌지 X
- 한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있음
- 다익스트라 알고리즘을 수행한 뒤에 테이블에 각 노드까지의 최단 거리 정보가 저장
- 완벽한 형태의 최단 경로 구하려면 소스코드에 추가적인 기능 더 넣어야 함
구현 방법
단계마다 방문 X 노드 중 최단 거리가 가장 짧은 노드를 선택
-> 매 단계마다 1차원 테이블의 모든 원소를 확인(순차 탐색)
성능 분석
- 총 O(V)번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색해야 함
- => 전체 시간 복잡도 $O(V^2)$
- 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수 <= 5,000개 -> 이 코드로 문제 해결
Python
import sys
input = sys.stdin.realine
INF = int(1e9) # 무한을 의미하는 값(10억)
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블 -> 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문 X 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
visited[now] = True
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 X 경우 -> 무한(INFINITY) 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 O 경우 -> 거리 출력
else:
print(distance[i])
C++
#include <bits/stdc++.h>
#define INF 1e9 // 무한을 의미하는 값(10억)
using namespace std;
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수: 최대 100,000개 가정
int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
vector<pair<int, int> > graph[100001];
// 방문한 적이 있는지 체크하는 목적의 배열 만들기
bool visited[100001];
// 최단 거리 테이블 만들기
int d[100001];
// 방문 X 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
int getSmallestNode() {
int min_value = INF;
int index = 0; // 가장 최단 거리가 짧은 노드(인덱스)
for (int i = 1; i <= n; i++) {
if (d[i] < min_value && !visited[i]) {
min_value = d[i];
index = i;
}
}
return index;
}
void dijkstra(int start) {
// 시작 노드에 대해서 초기화
d[start] = 0;
visited[start] = true;
for (int j = 0; j < graph[start].size(); j++) {
d[graph[start][j].first] = graph[start][j].second;
}
// 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for (int i = 0; i < n - 1; i++) {
// 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
int now = getSmallestNode();
visited[now] = true;
// 현재 노드와 연결된 다른 노드를 확인
for (int j = 0; j < graph[now].size(); j++) {
int cost = d[now] + graph[now][j].second;
// 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph[now][j].first]) {
d[graph[now][j].first] = cost;
}
}
}
}
int main(void) {
cin >> n >> m >> start;
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].push_back({b, c});
}
// 최단 거리 테이블을 모두 무한으로 초기화
fill_n(d, 100001, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (d[i] == INF) {
cout << "INFINITY" << '\n';
}
// 도달할 수 O 경우 -> 거리 출력
else {
cout << d[i] << '\n';
}
}
}
Java
import java.util.*;
class Node {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값(10억)
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수: 최대 100,000개 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 방문한 적이 있는지 체크하는 목적의 배열 만들기
public static boolean[] visited = new boolean[100001];
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
// 방문 X 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
public static int getSmallestNode() {
int min_value = INF;
int index = 0; // 가장 최단 거리가 짧은 노드(인덱스)
for (int i = 1; i <= n; i++) {
if (d[i] < min_value && !visited[i]) {
min_value = d[i];
index = i;
}
}
return index;
}
public static void dijkstra(int start) {
// 시작 노드에 대해서 초기화
d[start] = 0;
visited[start] = true;
for (int j = 0; j < graph.get(start).size(); j++) {
d[graph.get(start).get(j).getIndex()] = graph.get(start).get(j).getDistance();
}
// 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for (int i = 0; i < n - 1; i++) {
// 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
int now = getSmallestNode();
visited[now] = true;
// 현재 노드와 연결된 다른 노드를 확인
for (int j = 0; j < graph.get(now).size(); j++) {
int cost = d[now] + graph.get(now).get(j).getDistance();
// 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(j).getIndex()]) {
d[graph.get(now).get(j).getIndex()] = cost;
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 O 경우 -> 거리 출력
else {
System.out.println(d[i]);
}
}
}
}
우선순위 큐(Priority Queue)
- 우선순위가 가장 높은 데이터를 가장 먼저 삭제하는 자료구조
- ex. 여러 개의 물건 데이터를 자료구조에 넣었다가 가치가 높은 물건 데이터부터 꺼내서 확인해야 하는 경우
- 대부분의 프로그래밍 언어에서 표준 라이브러리 형태로 지원
힙(Heap)
- 우선순위 큐를 구현하기 위해 사용하는 자료구조 중 하나
- 최소 힙(Min Heap)과 최대 힙(Max Heap)
- 다익스트라 최단 경로 알고리즘을 포함해 다양한 알고리즘에서 사용
힙 라이브러리 사용 예제: 최소 힙
import heapq
# 오름차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
최대 힙
import heapq
# 내림차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, -value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(-heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result) # [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
다익스트라 알고리즘: 개선된 구현 방법
- 단계마다 방문 X 노드 중 최단 거리가 가장 짧은 노드 선택
-> 힙(Heap) 자료구조 이용 - 동작하는 기본 원리 동일
- 현재 가장 가까운 노드를 저장해 놓기 위해 힙 자료구조를 추가적으로 이용한다는 점이 다름
- 현재의 최단 거리가 가장 짧은 노드 선택 -> 최소 힙 사용
성능 분석
- 시간 복잡도: $O(ElogV)$
- 노드를 하나씩 꺼내 검사하는 반복문(while문)은 노드의 개수 V 이상의 횟수로는 처리 X
- 결과적으로 현재 우선순위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수
-> 최대 간선의 개수(E)만큼 연산이 수행될 수 있음
- 결과적으로 현재 우선순위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수
- 직관적으로 전체 과정은 E개의 원소를 우선순위 큐에 넣었다가 모두 빼내는 연산과 매우 유사
- 시간 복잡도를 $O(ElogE)로 판단할 수 있음
- 중복 간선을 포함 X 경우 -> $O(ElogV)$로 정리할 수 있음
- $O(ElogE)$ -> $O(ElogV^2)$ -> $O(2ElogV)$ -> $O(ElogV)$
Python
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값(10억)
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 X 경우 -> 무한(INFINITY) 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 O 경우 -> 거리 출력
else:
print(distance[i])
C++
#include <bits/stdc++.h>
#define INF 1e9 // 무한을 의미하는 값(10억)
using namespace std;
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수는 최대 100,000개라고 가정
int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
vector<pair<int, int> > graph[100001];
// 최단 거리 테이블 만들기
int d[100001];
void dijkstra(int start) {
priority_queue<pair<int, int> > pq;
// 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
pq.push({0, start});
d[start] = 0;
while (!pq.empty()) { // 큐가 비어있지 않다면
// 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
int dist = -pq.top().first; // 현재 노드까지의 비용
int now = pq.top().second; // 현재 노드
pq.pop();
// 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if (d[now] < dist) continue;
// 현재 노드와 연결된 다른 인접한 노드들을 확인
for (int i = 0; i < graph[now].size(); i++) {
int cost = dist + graph[now][i].second;
// 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph[now][i].first]) {
d[graph[now][i].first] = cost;
pq.push(make_pair(-cost, graph[now][i].first));
}
}
}
}
int main(void) {
cin >> n >> m >> start;
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].push_back({b, c});
}
// 최단 거리 테이블을 모두 무한으로 초기화
fill(d, d + 100001, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (d[i] == INF) {
cout << "INFINITY" << '\n';
}
// 도달할 수 O 경우 -> 거리 출력
else {
cout << d[i] << '\n';
}
}
}
Java
import java.util.*;
class Node implements Comparable<Node> {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
// 거리(비용)가 짧은 것이 높은 우선순위를 가지도록 설정
@Override
public int compareTo(Node other) {
if (this.distance < other.distance) {
return -1;
}
return 1;
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값(10억)
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수: 최대 100,000개 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
public static void dijkstra(int start) {
PriorityQueue<Node> pq = new PriorityQueue<>();
// 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
pq.offer(new Node(start, 0));
d[start] = 0;
while(!pq.isEmpty()) { // 큐가 비어있지 않다면
// 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
Node node = pq.poll();
int dist = node.getDistance(); // 현재 노드까지의 비용
int now = node.getIndex(); // 현재 노드
// 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if (d[now] < dist) continue;
// 현재 노드와 연결된 다른 인접한 노드들을 확인
for (int i = 0; i < graph.get(now).size(); i++) {
int cost = d[now] + graph.get(now).get(i).getDistance();
// 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(i).getIndex()]) {
d[graph.get(now).get(i).getIndex()] = cost;
pq.offer(new Node(graph.get(now).get(i).getIndex(), cost));
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 O 경우 -> 거리 출력
else {
System.out.println(d[i]);
}
}
}
}
플로이드 워셜(Floyd-Warshall) 알고리즘
- 모든 노드에서 다른 모든 노드까지의 최단 경로 모두 계산
- 다익스트라 알고리즘과 마찬가지로 단계별로 거쳐 가는 노드를 기준으로 알고리즘 수행
- 다만 매 단계마다 방문 X 노드 중 최단 거리를 갖는 노드를 찾는 과정 필요 X
- 2차원 테이블에 최단 거리 정보 저장
- 다이나믹 프로그래밍 유형에 속함
- 각 단계마다 특정한 노드 k를 거쳐 가는 경우 확인
- a에서 b로 가는 최단 거리보다 a에서 k를 거쳐 b로 가는 거리가 더 짧은지 검사
- 점화식
- $D_{ab} = min(D_{ab}, D_{ak} + D_{kb})$
성능 분석
- 노드의 개수가 N개 일 때 알고리즘상으로 N번의 단계를 수행
- 각 단계마다 $O(N^2)$의 연산 ~> 현재 노드를 거쳐 가는 모든 경로를 고려
- => 총 시간 복잡도 $O(N^3)$
Python
INF = int(1e9) # 무한을 의미하는 값(10억)
# 노드의 개수 및 간선의 개수 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현) 만들고, 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]
# 자기 자신 -> 자기 자신 => 비용: 0으로 초기화
for a in range(1, n + 1):
for b in range(1, n + 1):
if a == b:
graph[a][b] = 0
# 각 간선에 대한 정보 입력 받아, 그 값으로 초기화
for _ in range(m):
# A에서 B로 가는 비용: C라고 설정
a, b, c = map(int, input().split())
graph[a][b] = c
# 점화식에 따라 플로이드 워셜 알고리즘 수행
for k in range(1, n + 1):
for a in range(1, n + 1):
for b in range(1, n + 1):
graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])
# 수행된 결과 출력
for a in range(1, n + 1):
for b in range(1, n + 1):
# 도달할 수 X 경우 -> 무한(INFINITY)라고 출력
if graph[a][b] == INF:
print("INFINITY", end=" ")
else:
print(graph[a][b], end=" ")
print()
C++
#include <bits/stdc++.h>
#define INF 1e9 // 무한을 의미하는 값(10억)
using namespace std;
// 노드의 개수(N), 간선의 개수(M)
// 노드의 개수: 최대 500개 가정
int n, m;
// 2차원 배열(그래프 표현)를 만들기
int graph[501][501];
int main(void) {
cin >> n >> m;
// 최단 거리 테이블을 모두 무한으로 초기화
for (int i = 0; i < 501; i++) {
fill(graph[i], graph[i] + 501, INF);
}
// 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
if (a == b) graph[a][b] = 0;
}
}
// 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for (int i = 0; i < m; i++) {
// A에서 B로 가는 비용은 C라고 설정
int a, b, c;
cin >> a >> b >> c;
graph[a][b] = c;
}
// 점화식에 따라 플로이드 워셜 알고리즘을 수행
for (int k = 1; k <= n; k++) {
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b]);
}
}
}
// 수행된 결과를 출력
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (graph[a][b] == INF) {
cout << "INFINITY" << ' ';
}
// 도달할 수 O 경우 -> 거리 출력
else {
cout << graph[a][b] << ' ';
}
}
cout << '\n';
}
}
Java
import java.util.*;
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값(10억)
// 노드의 개수(N), 간선의 개수(M)
// 노드의 개수: 최대 500개 가정
public static int n, m;
// 2차원 배열(그래프 표현)를 만들기
public static int[][] graph = new int[501][501];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
// 최단 거리 테이블을 모두 무한으로 초기화
for (int i = 0; i < 501; i++) {
Arrays.fill(graph[i], INF);
}
// 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
if (a == b) graph[a][b] = 0;
}
}
// 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for (int i = 0; i < m; i++) {
// A에서 B로 가는 비용은 C라고 설정
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
graph[a][b] = c;
}
// 점화식에 따라 플로이드 워셜 알고리즘을 수행
for (int k = 1; k <= n; k++) {
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
graph[a][b] = Math.min(graph[a][b], graph[a][k] + graph[k][b]);
}
}
}
// 수행된 결과를 출력
for (int a = 1; a <= n; a++) {
for (int b = 1; b <= n; b++) {
// 도달할 수 X 경우 -> 무한(INFINITY) 출력
if (graph[a][b] == INF) {
System.out.print("INFINITY ");
}
// 도달할 수 O 경우 -> 거리 출력
else {
System.out.print(graph[a][b] + " ");
}
}
System.out.println();
}
}
}
728x90
반응형
'Computer Science > 자료구조 | 알고리즘' 카테고리의 다른 글
[이것이 취업을 위한 코딩 테스트다 with 파이썬] 10. 개발형 코딩 테스트 (0) | 2024.03.13 |
---|---|
[이것이 취업을 위한 코딩 테스트다 with 파이썬] 8. 기타 그래프 이론 (0) | 2024.03.13 |
[이것이 취업을 위한 코딩 테스트다 with 파이썬] 6. 다이나믹 프로그래밍 (0) | 2024.03.13 |
[이것이 취업을 위한 코딩 테스트다 with 파이썬] 5. 이진 탐색 (0) | 2024.03.13 |
[이것이 취업을 위한 코딩 테스트다 with 파이썬] 4. 정렬 알고리즘 (0) | 2024.03.13 |